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LElTER TO THE EDITOR 

Classification and universal properties of Sierpinski carpets 

Bin Lin'r 
Department of Physics, Beijing Normal University, China 

Received 6 October 1986 

Abstract. The type of critical points for the Potts model is found to be dependent on the 
structure of Sierpinski carpets. All possible types of structure for Sierpinski carpets with 
two interactions after bond moving are found. We present general Sierpinski carpets and 
new parameters are proposed and used to describe them. The lacunarity expression is 
revised. We discuss and propose a universal classification. Critical points, eigenvalues and 
flow diagrams are presented. Some fixed points display negative eigenvalues. 

The Sierpinski carpets are two-dimensional fractals with infinite ramification (Mandel- 
brot 1977, 1982). Phase transition at finite temperature is possible in these systems. 
The Ising and Potts models on Sierpinski carpets have been studied and some fixed 
points and critical exponents have been obtained (Gefen et al1984, Lin 1986). However, 
so far only one type of Sierpinski carpets has been studied-carpets with central cutout. 

We have pointed out that on the central cutout Sierpinski carpets marginal critical 
points will appear (Lin 1986). In that paper we also conjectured that the marginal 
critical points ( K ,  00) and (00, K,) are due to the peculiarity of eliminations. In this 
letter we will study this conjecture. We will give all possible types of elimination 
(structure) with two interactions after bond moving and show that different types of 
elimination of Sierpinski carpets correspond to different types of fixed points for Potts 
model. There are structures in which marginal critical exponents disappear. 

First we introduce the extension of Sierpinski carpets. We call the Sierpinski carpets 
described by Mandelbrot and Gefen et a1 (Mandelbrot 1977, 1982, Gefen et a1 1980, 
1984) regular carpets, i.e. boundary subsquares are retained and eliminated subsquares 
are arranged in a square array (e.g. figure 4). For these carpets parameters (b, I) can 
be used to describe the structures (Gefen et a1 1980, 1984). We now introduce general 
Sierpinski carpets. Figure 1 is an example. We see that the elimination manner of 
figure 1 differs from that of a regular one-some of the boundary subsquares are cut 
out and the eliminated subsquares are no longer arranged in a square array (but still 
in a symmetrical manner). It is obvious that (b, I)  cannot serve the general carpet like 
figure 1. We suggest the parameters (b,p, t )  for the description of a general carpet, 
where p is the number of eliminated subsquares from a square containing 6 subsquares 
and t is the number of rows (or columns) in which boundary subsquares are cut out 
(if boundary subsquares are cut out) or there are eliminated subsquares (if boundary 
subsquares are not cut out, see figures 1 and 3). Then the formula for the fractal 
dimension D of Sierpinski carpets should be, in these new parameters, 

(1) D = In( b2 -p)/ln 6. 

t Present address: Department of Physics, University of Houston, Houston, Texas 77004, USA. 
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Figure 1. A general Sierpinski carpet with two interactions after bond moving, type ( C , ,  
C , )  = 0,  b = 7, p = 20 and t = 2: ( a )  the unrenormalised carpet, and ( b )  bonds between 
renormalised sites A and B after bond moving. There are only two kinds of bond 
(interaction) K , ,  = 3 K  + 4 K ,  and K , ,  = 4 K , ,  ( c )  renormalised bond between A and B, 
K',(d)resultsofbondmovingforbondsbetween Cand D. K , , =  K + 3 K ,  and K p , = 2 K , ;  
( e )  renormalised bond K :  . 

We apply bond-moving renormalisation to analyse the critical behaviour of the 
Potts model on Sierpinski carpets. Two kinds of interactions K and K ,  were defined 
on a carpet (Gefen et a1 1984). We here consider only that kind of structure from 
which there are only two interactions between any two renormalised sites after bond 
moving (figures 1 and 2). With our new parameters we can easily write the approximate 
recursion relation and four matrix elements determining eigenvalues for the q-state 
Potts model on general Sierpinski carpets, which are similar to the relations we have 
obtained for regular carpets (Lin 1986): 

[ l + ( q - 1 )  e-"-~lb- '[1+(q-l)  e-"m]'-(1 -e-K-l)b-r(l -e-"pv)' 
[ ~ + ( q -  I )  e - K - ~ ] b - ' [ ~ + ( q - ~ )  e-Kp~] '+(q- l ) ( l  -e-Kml)b-r(l -e-"pz)' 

e-K: = 

i = l , 2  (2)  
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Figure2. A Sierpinski carpet with three interactions after bond moving (see the caption 
of figure 1 ) .  It is easy to see that K a , = 3 K + 4 K , ,  K B l = 6 K , ,  K Y , = 5 K + 2 K , ;  K , , =  
K + 3 K , ,  K, ,  = 3 K ,  and K y 2  = 2K + 2 K , .  This kind of structure is not included in our 
discussion. 
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where K ;  = K '  and K ;  = K :  are renormalised interactions (figure 1). K,, and KO, are 
effective interactions after bond moving (before decimation). K , ,  and K,,  are to be 
renormalised to K '  and Kez  and K, ,  to K L  (see figure 1) .  In ( 3 )  we have 

F,  , = [ 1 + ( q  - 1 ) e-"~l] 

F3, = [ 1 +  ( q  - 1) e -K~t ]  
F2 I = ( 1 - 

F4, = (1 - e-"@) 

= ( F21/ F I  I ) b - ' (  F41/ F 3 ~  1'. 
Different types of structure produce different K,, and K,, and therefore different 

types of fixed point. The most general form of K,, and K,, is 

K , ,  = C,K + C 2 K ,  K , ,  = C,K + C 4 K ,  
(4) 

K a 2 = C 5 K + C 6 K ,  Kp2= C7K + CSK,. 

Combinations of zero coefficients ( C,-Cs) lead to various types of structure. We find 
that there are, altogether, seven combinations (i.e. seven types of structure). They are 

~ ~ ~ ~ = ~ ~ ~ 5 = ~ ~ ( ~ 2 ~ ~ 7 ) = ~ ~ ( ~ 3 , ~ 7 ) = ~ ~ ( ~ 2 ~ ~ 3 ~ ~ 7 ) = ~ , ( ~ ~ , ~ 5 , ~ 7 ) = ~ ~  ( 5 )  

Here 0 stands for the case where none of the eight coefficients is zero. (C,,  C,) = 0 
means C, = 0 and C, = 0 simultaneously, and the same notation applies for (C,, C,, 
C,) = 0. We point out that when b < 6 some of the seven types ( 5 )  will disappear. For 
example, type 0 disappears and type ( C,, C, )  = 0 remains with only the cross cutout 
structure (no fixed point, figure 6 )  when b = 5 ,  and in the case of b = 3 ,  there remain 
only types ( C2, C7) = 0, ( C2, C,, C7) = 0 and (C,,  C5, C7) = 0. Within a type of 
structure there are several distinct eliminations. In figure 1 and figures 3-9 we present 
some typical structures. We summarise the lacunarities, fixed points and eigenvalues 
for each of the seven types ( 5 )  in table 1. Flow diagrams are shown in figure 10. For 
convenience of drawing we draw the flow diagrams in (e-", e-".) space. 

Figure 3. Sierpinski carpets, type C, = 0 in classification ( 5 ) ,  b = 7 :  ( a )  p = 4, f = 2; ( b ) ,  
( c )  p = 4, t = 2. They have the same symmetry (lacunarities are different) and the same 
fractal dimension 0, so the critical behaviours are the same. The symmetry differs from 
that of (a) .  ( d )  p = 9 ,  t = 3 ,  having different symmetry from figure 4(a), although the 
eliminated subsquares for both are identical. 

( a )  ( b )  
Figure 4. Regular carpets, type (C,, C,) = 0, b = 7 :  ( a )  p = 9, f = 3; ( b )  p = 16, f = 4. 
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Figure 5. A general carpet, type C, = 0, b = 7 ,  p = 24, t = 4. 

Figure 6. A general carpet, ‘cross cutout’ carpet, b = 7, p = 12, t = 1 ,  type ( C , ,  C,)  = 0, 
belonging to the same type as figure 1 but having no fixed point. 

Figure 7. General carpets, type @, b = 7 :  ( a )  p = 24, t = 3; ( b ) ,  ( e )  possessing the same 
fractal dimension D and symmetry (lacunarities are different) and the same universal class. 

Figures. General carpets, type (C2, C , ,  C, )  = 0, b = 7:  ( a )  p = 16, t = 4; ( b )  ‘cross remain- 
ing’ carpet, p = 36, t = 6. Unlike ( a ) ,  ( b )  has no fixed point. L = 0 by expression ( 6 )  while 
( 7 )  gives L = 0.4936. ( c )  p = 25, t = 5;  another example of improper zero lacunarity for 
inhomogeneous carpet calculated from expression (6), L = 0; ( 7 )  gives L = 0.2849. 

Figure 9. A general carpet, type ( C , ,  C,  , C,) = 0, b = 7 ,  p = 24, t = 3. There is only one 
kind of interaction in this type of structure, K w .  
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Figure 10. Flow diagrams for the Potts model on general Sierpinski carpets. E and F are 
critical points, A, B, C and D are trivial fixed points (see table 1 for details). ( a )  Type 
Cz = 0, figure 3( b ) ;  ( b )  type (C , ,  C,) = 0, figure 4( b ) ;  ( c )  type C, = 0, figure 5;  ( d )  type 
@, figure 7(  a ) ;  ( e )  type (C,,  C5, C,) = 0, figure 9, single-interaction structure. 

In table 1 we list the eigenvalues A ,  instead of the critical exponents y ,  because 
some fixed points display negative eigenvalues. We know y ,  = In A,/ln b, b here playing 
the role of the scale factor of the RG. For positive A , ,  y,  is easy to obtain, but y ,  can 
not be determined for negative A,.  One can easily see that the flow lines for the structures 
with negative eigenvalues intersect. This is not permitted for a flow diagram. So we 
exclude these structures from phase transition systems (types ( C, ,  C,) = 0 and (C,, 
C,, C,)  = 0, see table 1). Although critical exponents y ,  for these structures can be 
formally calculated ( l A I l <  1 for every negative A,  and there is always a relevant 
eigenvalue A, > 1 accompanying each negative A , )  we do not present the flow diagrams 
for the structures with negative eigenvalues. 

There are two special cases in table 1: the ‘cross cutout’ carpet and ‘cross remaining’ 
carpet (figures 6 and 8( b )  respectively). They belong to the types ( C 3 ,  C,) = 0 and 
( C 2 ,  C3, C,)=O respectively, but do not behave like the other structures in their 
respective types-there is no fixed point in these two structures (except for trivial 
points). This particular property of these cross carpets is independent of b and q 
values, i.e. the cross carpets have no fixed point in any b or q value. Among seven 
types of structures ( 5 ) ,  type (C,, C5,  C,)  = 0 is a single-interaction structure, where K ,  
only exists (figure 9). One can easily write K,, and KO, for figure 9: Kpl = 4K, and 
K p 2  = 3K,.  So this type is equivalent to ( C , ,  C2, C3, C5, C,, C,) = 0. 

Lacunarities presented in table 1 are calculated by a formula slightly different from 
that in our previous paper (Lin and Yang 1986), where the lacunarity L is defined by 

l b  
L=E L ( s ) .  

r = l  
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This works well for regular carpets. Now for a general carpet there are some problems 
with using (6): the parameter I is not a valid parameter and, more importantly, there 
are inhomogeneous carpets on which (6) would produce zero lacunarity (figures 8( b )  
and 8 ( c ) ) .  To calculate the lacunarity of a general carpet we amend expression (6) 
and use an all-scale average of L ( s )  to define L 

where L( s )  is the same as in (6 ) .  Expression (7)  removes the improper zero lacunarities 
for inhomogeneous carpets produced by (6). Having analysed numerical results of 
L ( s )  and the new L, we find that the discreteness of elimination has little effect on 
L ( s )  with small S and therefore little effect on L. As a whole, L ( s )  decreases as S 
increases for all S values 1 to b-1 (see Lin and Yang 1986). In view of the facts above 
we suggest that expression (6) be replaced by (7) .  (7)  has been used in table 1. 
Lacunarities calculated by the new expression (7) agree with the direct observations. 

Let us compare the lacunarities of figures 5, 7(a )  and 9 (they have the same 
parameters b and p ) .  We can distinguish the homogeneities among them intuitively: 
figure 9 is the most homogeneous and figure 5 the second; (7)  tells us that their 
lacunarities are 0.1883, 0.2418 and 0.3373 respectively. Figures 8 ( a ) ,  7 ( c ) ,  7(b)  and 
4(b)  are another example (see table 1). 

We argue that L cannot serve as a classifying parameter, because there are carpets 
having different lacunarities but possessing the same fixed points and critical exponents 
(figures 3(b)  and 3(c) ,  7 ( b )  and 7 ( c ) ) .  We propose that, besides the fractal dimension 
0, a symmetrical factor be a classifying parameter. In other words, we think that when 
two carpets have the same symmetry they would have the same critical exponents if 
they possessed an identical fractal dimension D. If the eliminated blocks of a structure 
are moved symmetrically to form another carpet structure, then the two structures have 
the same symmetry, fixed points and exponents (e.g. figures 3(b)  and 3(c) ;  figures 7(b)  
and 7(c) ,  see table 1 ) .  In the symmetrical moving of eliminated blocks, the boundary 
subsquares are particular: the boundary eliminated subsquares cannot be moved away 
from boundary subsquares and vice versa. If not, the symmetry is considered changed. 
Figure 7 ( c )  preserves the symmetry or figure 7(b) ,  but figure 8(a)  changes the symmetry 
(it moves two additional eliminated subsquares to the boundary of each side). So the 
critical behaviours of figure 8 ( a )  differ from that of figures 7 ( b )  and 7 ( c )  (see table 
1; another example is figures 3 ( b ) ,  3(c)  and 3 ( a ) ) .  It should be noted that the eliminated 
subsquares should be moved in blocks, otherwise the symmetry cannot be preserved. 
Figures 3 ( d )  and 4 ( a )  have the same eliminated subsquares but different symmetry. 
However, all fixed points of (e-K', 0) type (and corresponding eigenvalues (AK, 1)) 
with the same fractal dimension D are identical, no matter what lacunarity and 
symmetry they have (see table 1,  and compare figure 4(b)  with 8(a ) ,  3 ( d )  with 4(a)  
and 3 ( a )  with 3(b)) .  We would like to mention that our universality discussion is 
based on the approximate bond-moving renormalisation. We look forward to hearing 
more results on this topic. 

The author thanks Professor 2 R Yang for his valuable discussions and suggestions 
on this manuscript. This work was supported in part by funds awarded by the Chinese 
Academy of Science. 
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